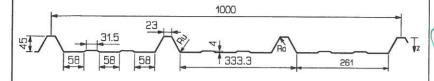
Aluminium- Trapezprofil


TP 45-333

Querschnitts- und Bemessungswerte nach DIN EN 1999-1-4

Profiltafel in

Negativlage

Maße in mm, Radien $R_u = 4,5$ mm, $R_o = 6,5$ mm

Anlage 7.1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T14-205 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 16,12.2014

Leiter: FREISTAAT Bearbeiter:

Nennwert der Spannung an der 0,2 % Dehngrenze R_{p0,2} = 180 N/mm², Zugfestigkeit R_m = 200 N/mm² (Vigname)

Maßgebende Querschnittswerte

Nenn-	Eigenlast	Biegung 11)			Norr	Grenzstützweiten 13)					
blech- dicke				nicht redu	zierter Qu	erschnitt	wirksam	er Quersc	Einfeld- träger	Mehrfeld- träger	
t	g	[+ eff	I- eff	A _g	ig	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	ı⁴/m	cm²/m	cm		cm²/m	cm		m	
0,50	0,017	8,33	8,15	5,80	1,41	3,51	1,03	1,83	2,56	/	
0,70	0,024	14,19	12,40	8,12	1,41	3,51	1,94	1,81	2,60		/
0,80	0,027	17,21	14,63	9,28	1,41	3,51	2,47	1,81	2,62		
0,90	0,030	20,17	16,91	10,43	1,41	3,51	3,06	1,80	2,64		
1,00	0,034	22,83	19,24	11,59	1,41	3,51	3,68	1,79	2,66		
							0.0000000000000000000000000000000000000				

Schubfeldwerte

t	Gr	enzzustano	d der Gebrau	chstaudlich	nkeit ¹⁷⁾	Grenzzustand der Tragfähigkeit 18)							
				onotaagiioi	inoit				Lasteinleitung				
	T _{b.Ck}	K ₁ ^{14) 15)}	K ₂ ^{14) 15)}	K*, 15)	K* ₂ ¹⁵⁾	T _{Rk,g} 16)	L _R ¹⁶⁾	T _{Rk,I}	K, 19)	T _{t,Rk} 22)	F _{t,Rk} ²¹⁾	für a ≥	
	D,CK								3		130 mm	280 mm	
mm	kN/m	10⁴·m/kN	10-4 · m ² /kN	10 ⁻⁴ · 1/kN	10⁴·m²/kN	kN/m	m	kN/m	-	kN/m	kN	kN	

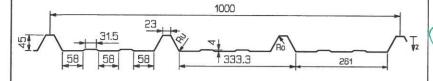
Normalbefestigung: Verbindung in jedem Untergurt

Sonderbefestigung: V	/erbindung mit 2 Schrauben	oder verstärkter Unterle	gscheibe in jedem Un	tergurt ²⁰⁾

a) Blechdicke: Minustoleranz kleiner als 5% der Nenndicke.

Weitere Fußnoten siehe Beiblatt 1/2 bzw. 2/2

Aluminium- Trapezprofil


TP 45-333

Querschnitts- und Bemessungswerte nach DIN EN 1999-1-4

Profiltafel in

Negativlage

Maße in mm, Radien R_u = 4,5 mm, R_o = 6,5 mm

Anlage 7.2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T14-205 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 16.12.2014

Leiter: Bearbeiter: FREISTAAN SACHSEN

Nennwert der Spannung an der 0,2 % Dehngrenze R_{p0,2} = 180 N/mm², Zugfestigkeit R_m = 200 N/mm²FKI\0

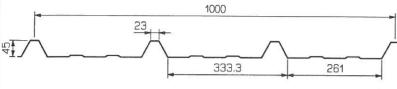
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 3)

Nenn-	Feldmo-				Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 4) 5) 7)											
blech- dicke	ment		lauf- kraft ⁶⁾	Quer- kraft		Kreisinteraktion										
dicke	dicke lagerkraft 6)				Stützmomente						Zw	äfte	fte			
			$\begin{vmatrix} l_{a1} = l_{a2} = \\ 10 \text{ mm} \end{vmatrix} = 40 \text{ mm}$		I _{a,B} = 10 mm		I _{a,B} = 60 mm		I _{a,B} = 120 mm		I _{a,B} = 10 mm		I _{a,B} = 60 mm		I _{a,B} = 120 mm	
t	M _{c,Rk,F}	R"	,Rk,A	$V_{w,Rk}$	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			kNm/m				kN/m					
0,50	0,367	0,91	1,42		0,514	0,499	0,514	0,499	0,514	0,499	1,82	1,82	3,29	3,29	4,32	4,32
0,70	0,641	1,73	2,63		0,820	0,795	0,820	0,795	0,820	0,795	3,47	3,47	6,07	6,07	7,88	7,88
0,80	0,784	2,24	3,36	n.m.	0,987	0,956	0,987	0,956	0,987	0,956	4,47	4,47	7,72	7,72	9,99	9,99
0,90	0,915	2,80	4,16		1,168	1,133	1,168	1,133	1,168	1,133	5,60	5,60	9,54	9,54	12,29	12,29
1,00	1,046	3,42	5,03		1,349	1,308	1,349	1,308	1,349	1,308	6,84	6,84	11,52	11,52	14,80	14,80

Reststützmomente 8)

	I _{a,B} = 10 mm			I _{a,B} = 60 mm			l _{a,E}	= 120 m	im	Reststützmomente M _{R,Rk}			
t	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}	min L	max L	max M _{R,Rk}				
mm	m	m	kNm/m	m	m	kNm/m	m	m	kNm/m				
										$M_{R,Rk} = 0$ für $L \le min L$			
										$M_{R,Rk} = \frac{L - \min L}{\max L - \min L} \cdot \max M_{R}$			
										M _{R,Rk} = max M _{R,k} für L ≥ max L			

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1)2)


/- Intera		M°	Endauf- lagerkraft		ktion	isintera	V		Endauf-	ment	blech- dicke
	M _{c.Rk,B}	M°	_		Kreisinteraktion						
		M° _{Rk,B}	R _{w,Rk,A}	$V_{w,Rk}$	$R_{w,Rk,B}$	${\mathsf R}^{\mathsf o}_{_{Rk,B}}$	M _{c,Rk,B}	M° _{Rk,B}	$R_{w,Rk,A}$	M _{c,Rk,F}	t
kN/m	kNm/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kNm/m	kN/m	kNm/m	mm
-	0,367	-	5,14	-	2,59	2,59	0,367	0,378	1,29	0,499	0,50
_	0,641	-	12,73	-	4,90	4,90	0,641	0,661	2,45	0,795	0,70
-	0,784	-	16,62	-	6,29	6,29	0,784	0,808	3,15	0,956	0,80
-	0,915	-	21,04	-	7,83	7,83	0,915	0,943	3,92	1,133	0,90
-	1,046	-	25,98	-	9,52	9,52	1,046	1,079	4,76	1,308	1,00
-	1,046	-	25,98	5	9,52	9,52	1,046	1,079	4,76	1,308	1,00
-		0,641 0,784 0,915	- 0,641 - 0,784 - 0,915	12,73 - 0,641 16,62 - 0,784 21,04 - 0,915	- 12,73 - 0,641 - 16,62 - 0,784 - 21,04 - 0,915	4,90 - 12,73 - 0,641 6,29 - 16,62 - 0,784 7,83 - 21,04 - 0,915	4,90 4,90 - 12,73 - 0,641 6,29 6,29 - 16,62 - 0,784 7,83 7,83 - 21,04 - 0,915	0,641 4,90 4,90 - 12,73 - 0,641 0,784 6,29 6,29 - 16,62 - 0,784 0,915 7,83 7,83 - 21,04 - 0,915	0,661 0,641 4,90 4,90 - 12,73 - 0,641 0,808 0,784 6,29 6,29 - 16,62 - 0,784 0,943 0,915 7,83 7,83 - 21,04 - 0,915	2,45 0,661 0,641 4,90 4,90 - 12,73 - 0,641 3,15 0,808 0,784 6,29 6,29 - 16,62 - 0,784 3,92 0,943 0,915 7,83 7,83 - 21,04 - 0,915	0,795 2,45 0,661 0,641 4,90 - 12,73 - 0,641 0,956 3,15 0,808 0,784 6,29 6,29 - 16,62 - 0,784 1,133 3,92 0,943 0,915 7,83 7,83 - 21,04 - 0,915

Fußnoten siehe Beiblatt 1/2

Aluminium- Trapezprofil TP 45-333 Durchknöpftragfähigkeit nach DIN EN 1999-1-4 Profiltafel in Negativlage Maße in mm

Anlage 7.3 zum Prüfbescheid
ALS TYPENENTWURF
in baustatischer Hinsicht geprüft.
Prüfbescheid Nr. T14-205
Landesdirektion Sachsen
Landesstelle für Bautechnik

Leipzig, den 16.12.2014 eiter: FREISTAAT Bearbeiter:

Nennwert der Spannung an der 0,2 % Dehngrenze R_{p0,2} = 180 N/mm², Zugfestigkeit R_m = 200 N/mm²[1]

Aufnehmbare Durchknöpfkraft Z_{Rk} in kN pro Verbindungselement (Schraube) in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. $^{1)}$ ²⁾

Varhinduna	t= 0,5	50 mm	t= 0,7	70 mm	t= 0,8	30 mm	t= 0,9	0 mm	t= 1.0	10 mm
Verbindung	d = 16	d = 19	d = 16						d = 16	d = 19
	0,520	0,567	0,728	0,794	0,832	0,907		1,02	1,04	1,13
\	0,520	0,567	0,728	0,794	0,832	0,907	0,936	1,02	1,04	1,13

 $^{1)}$ Durchknöpfkraft: F $_{\rm p,Rd}$ = $\alpha_{\rm L}$ \cdot $\alpha_{\rm M}$ \cdot $\alpha_{\rm E}$ \cdot Z $_{\rm Rk}$ / $\gamma_{\rm M3}$ \qquad $\gamma_{\rm M3}$ = 1,25

 α_L = Abminderungsbeiwert α_L zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN EN 1999-1-4, Tabelle 8.1 (α_L = 1,0 bei Verbindungen am Endauflager oder im Obergurt)

 $\alpha_{_{\rm M}}$ = Abminderungsbeiwert $\alpha_{_{\rm M}}$ für Schrauben mit Aluminiumdichtscheiben siehe DIN EN 1999-1-4, Tabelle 8.2

 $\alpha_{\rm E}^{}$ = Abminderungsbeiwert $\alpha_{\rm E}^{}$ zur Berücksichtigung der Anordnung der Verbindung nach DIN EN 1999-1-4, Tabelle 8.3

²⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.